Simulating aerosol microphysics with the ECHAM4/MADE GCM – Part II: Results from a first multiannual simulation of the submicrometer aerosol

نویسنده

  • A. Lauer
چکیده

First results of a multiannual integration with the new global aerosol model system ECHAM4/MADE are presented. This model system enables simulations of the particle number concentration and size-distribution, which is a fundamental innovation compared to previous global model studies considering aerosol mass cycles only. The data calculated by the model provide detailed insights into the properties of the global submicrometer aerosol regarding global burden, chemical composition, atmospheric residence time, particle number concentration and size-distribution. The aerosol components considered by the model are sulfate (SO4), nitrate (NO3), ammonium (NH4), black carbon (BC), organic matter (OM), mineral dust, sea salt and aerosol water. The simulated climatological annual mean global atmospheric burdens (residence times) of the dominant submicrometer aerosol components are 2.25 Tg (4.5 d) for SO4, 0.46 Tg (4.5 d) for NH4, 0.26 Tg (6.6 d) for BC, and 1.77 Tg (6.5 d) for OM. The contributions of individual processes such as emission, nucleation, condensation or dry and wet deposition to the global sources and sinks of specific aerosol components and particle number concentration are quantified. Based on this analysis, the significance of aerosol microphysical processes (nucleation, condensation, coagulation) is evaluated by comparison to the importance of other processes relevant for the submicrometer aerosol on the global scale. The results reveal that aerosol microphysics are essential for the simulation of the particle number concentration and important but not vital for the simulation of particle mass concentration. Hence aerosol microphysics should be taken into account in simulations of atmospheric processes showing a significant dependence on aerosol particle number concentration. The analysis of the vertical variation of the microphysical net production and net depletion rates performed for Correspondence to: A. Lauer ([email protected]) particle number concentration, sulfate mass and black carbon mass concentration unveils the dominant source and sink regions. Prominent features can be attributed to dominant microphysical processes such as nucleation in the upper troposphere or wet deposition in the lower troposphere. Regions of efficient coagulation can be identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating aerosol microphysics with the ECHAM/MADE GCM – Part I: Model description and comparison with observations

The aerosol dynamics module MADE has been coupled to the general circulation model ECHAM4 to simulate the chemical composition, number concentration, and size distribution of the global submicrometer aerosol. The present publication describes the new model system ECHAM4/MADE and presents model results in comparison with observations. The new model is able to simulate the full life cycle of part...

متن کامل

Simulating aerosol microphysics with ECHAM/MADE

Simulating aerosol microphysics with the ECHAM/MADE GCM – Part I: Model description and comparison with observations A. Lauer, J. Hendricks, I. Ackermann, B. Schell, H. Hass, and S. Metzger DLR Institute of atmospheric physics, Oberpfaffenhofen, Wessling, Germany Ford Research Center Aachen, Aachen, Germany Max Planck Institute for Chemistry, Mainz, Germany Received: 2 May 2005 – Accepted: 11 A...

متن کامل

Development and Testing of an Aerosol-Stratus Cloud Parameterization Scheme for Middle and High Latitudes

The aim of this new project is to develop an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary layer clouds. Our approach is to create, test, and implement a bulk-microphysics/aerosol model using data from Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) sites and large-eddy simulation (LES) explicit bin-resolving aerosol/microphysics mode...

متن کامل

Effect of Mount Pinatubo H2SO4/H2O aerosol on ice nucleation in the upper troposphere using a global chemistry and transport model

[1] A 2-year simulation of Mount Pinatubo volcanic aerosol is performed using a global chemistry and transport model. The model is driven by meteorological fields from the NASA Goddard Data Assimilation Office (DAO) general circulation model (GCM) with a horizontal resolution of 2 latitude by 2.5 longitude and 46 vertical levels. The model reproduces the equatorial aerosol reservoir bounded bet...

متن کامل

Online-coupled meteorology and chemistry models: history, current status, and outlook

The climate-chemistry-aerosol-cloud-radiation feedbacks are important processes occurring in the atmosphere. Accurately simulating those feedbacks requires fully-coupled meteorology, climate, and chemistry models and presents significant challenges in terms of both scientific understanding and computational demand. This paper reviews the history and current status of the development and applica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006